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Lipid profiling identifies modifiable 
signatures of cardiometabolic risk in 
children and adolescents with obesity
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Min Kim    2, Kajetan Trost1,2, Kourosh Hooshmand2, Morten Asp Vonsild Lund3,4, 
Cilius E. Fonvig1,3,5, Helene Bæk Juel1, Trine Nielsen    5,6, Lars Ängquist1, 
Peter Rossing    2,5, Maja Thiele    7,8, Aleksander Krag    7,8, 
Jens-Christian Holm    1,3,5,11 , Cristina Legido-Quigley    2,9,11  & 
Torben Hansen    1,11 

Pediatric obesity is a progressive, chronic disease that can lead to serious 
cardiometabolic complications. Here we investigated the peripheral 
lipidome in 958 children and adolescents with overweight or obesity and 
373 with normal weight, in a cross-sectional study. We also implemented 
a family-based, personalized program to assess the effects of obesity 
management on 186 children and adolescents in a clinical setting.  
Using mass spectrometry-based lipidomics, we report an increase in 
ceramides, alongside a decrease i n l ys ophospholipids and omega-3 fatty 
acids with obesity metabolism. C er am id es, p ho sp ha ti dy le th an olamines 
and p  h o  sp  h a  ti  d y  li  nositols were associated with insulin resistance and 
cardiometabolic risk, whereas sphingomyelins showed inverse associations. 
Additionally, a panel of three lipids predicted hepatic steatosis as effectively 
as liver enzymes. Lipids partially mediated the association between obesity 
and cardiometabolic traits. The n on ph armacological management reduced 
levels of ceramides, phospholipids and triglycerides, indicating that 
lowering the degree of obesity could partially restore a healthy lipid profile 
in children and adolescents.

Obesity, defined as an abnormal or excessive accumulation of fat mass 
that may impair health1, can lead to serious cardiometabolic complica-
tions. The global prevalence of obesity in children and adolescents is 
on the rise, with projections indicating over 250 million will be affected 
by 2030 (ref. 2). While environmental changes are major contributors 
to this increase, genetic factors also play a significant role, with studies 
indicating a heritability rate of up to 67% (refs. 3,4). Obesity is not merely 
about excess fat accumulation; it leads to serious cardiometabolic 
complications. Increased body weight in children and adolescents can 
also result in prediabetes or diabetes, increased blood pressure of up to 
25% among children with obesity and metabolic dysfunction-associated 

steatotic liver disease (MASLD), estimated to be 40% in children with 
body mass index (BMI) at or above 95th percentile5. Another critical 
aspect of obesity is the accumulation of adipose tissue and dyslipi-
demia, which is clinically manifested through altered lipid profiles 
such as increased cholesterol, low-density lipoprotein, triglycerides 
(TGs) and decreased high-density lipoprotein6,7. While these lipids are 
clinically validated, the number of lipid molecules in the human body 
is several orders of magnitude higher8.

Lipid metabolism has been studied for decades with the aim to 
map their chemical diversity and functionality9,10. Recent advance-
ments in mass spectrometry (MS) have enabled mapping of single  
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duration of 1.1 years. We performed a cross-sectional analysis on 1,331 
participants divided into normal weight (n = 373) and overweight/
obesity groups (n = 958) and a longitudinal analysis on 186 children 
and adolescents with overweight or obesity. A schematic study design 
is shown in Fig. 1.

In the cross-sectional study, the overweight/obesity and normal 
weight groups differed significantly in anthropometrics and cardio-
metabolic risk profiles except for sex, lactate dehydrogenase (LDH) and 
hemoglobin A1c (HbA1c). Specifically, the overweight/obesity group 
had higher BMI SDS, waist, waist/hip ratio (WHR), body fat %, liver fat % 
and elevated levels of liver enzymes such as alanine transaminase (ALT), 
aspartate transaminase (AST) and γ-glutamyl transferase (GGT). They 
also exhibited elevated levels of traditional lipids, including low-density 
lipoprotein cholesterol (LDL-C), total cholesterol (TC) and TG, as well 
as higher glycemic parameters, including glucose, insulin, C-peptide 
and homeostasis model assessment of insulin resistance (HOMA-IR). 
Other notable differences included higher high-sensitivity C-reactive 
protein (hs-CRP), leptin, leptin/adiponectin ratio, glucagon, total 
glucagon-like peptide-1 (GLP-1), systolic blood pressure (SBP) SDS 
and diastolic blood pressure (DBP) SDS. They also had lower levels of 
high-density lipoprotein cholesterol (HDL-C) and adiponectin (Table 1). 
In comparison to the normal weight group, the overweight/obesity 
group exhibited a higher prevalence of hepatic steatosis defined as 
liver fat ≥ 5.0 % (15.6% versus 0%), high ALT (38.7% versus 12.6%), dyslipi-
demia (38.0% versus 10.8%), hyperglycemia (14.0% versus 8.6%), insulin 
resistance (35.0% versus 5.6%) and hypertension (15.9% versus 3.0%)  
(all P < 0.05).

Associations of lipid species with overweight or obesity
Differentially abundant lipids revealed a gradual change among 
the three weight statuses (normal weight, overweight and obesity), 
after adjusting for age and sex. Among 227 annotated lipid species,  
142 exhibited significant differences across normal weight, overweight 
and obesity (P < 5% false discovery rate (FDR)). The pairwise compari-
sons revealed 121 lipids significantly differed between normal weight 
and obesity, 43 between overweight and normal weight and 60 between 
overweight and obesity (Fig. 2a).

Logistic regression analyses for normal weight versus over-
weight/obesity revealed 87 significant lipid species in 13 lipid classes, 
of which 52 were positively and 35 were negatively associated, inde-
pendent of age and sex (P < 5% FDR). Notably, 20% measured Cers 
(3 of 15), 33% measured SMs (5 of 15), 47% TGs (25 of 53), all diacyl-
glyceride (DG) (2 of 2) and 40% FAs (2 of 5) were positively associ-
ated, whereas the majority of glycerophospholipids, including 33% N, 
N-dimethyl-phosphatidylethanolamine (dMePE) (1 of 3), 30% lysophos-
phatidylcholine (LPC) (7 of 23) and 60% lysophosphatidyethanolamine 
(LPE) (3 of 5) displayed negative associations and PCs, PEs and PIs 
showed more divergent trends in associations: 14% and 20% PCs (9 and 
13 of 64), 25% and 17% PEs (3 and 2 of 12) and 12% and 38% PIs (1 and 3  
of 8) had significant positive and negative associations (Fig. 2b, 
Extended Data Fig. 1 and Supplementary Table 1).

The interaction of obesity with age related lipid species
A partial least squares-discriminant analysis (PLS-DA) score plot of 
lipids between three age groups in normal weight and overweight/
obesity groups is shown in Fig. 3a,b. Three age groups (age group 1, 
girls aged <9 years and boys aged <10 years; age group 2, girls aged 
9–15 years and boys aged 10–16 years; age group 3, girls aged >15 years 
and boys aged >16 years) were defined according to the approximate 
pubertal development33. Compared to the more pronounced sepa-
ration between age groups 1 and 2 (larger than between age groups 
2 and 3) in the normal weight group, age group 1 did not yield such 
a clear separation in the overweight/obesity group. We, therefore, 
assessed whether weight status modifies the association between 
continuous age and lipid species by including an interaction term 

molecular structures11. In obesity, the lipidome profile is signifi-
cantly altered and recent studies reported that sphingolipids and 
phosphatidylethanolamines (PE) are key drivers of cardiometabolic 
complications12,13. Despite these findings, there remains a gap in 
research specifically addressing pediatric health and the lipid profiles 
in children and adolescents with obesity.

Here, we performed MS-based plasma lipidomics and deep clinical 
phenotyping in children from the HOLBAEK study. This cross-sectional 
study includes 1,331 children and adolescents with normal weight, 
overweight or obesity14,15. Furthermore, the intervention study includes 
186 children with overweight or obesity receiving the Holbaek obesity 
treatment, which is a family-based, individual-centered, comprehen-
sive, nonpharmacological management with follow-up visits at the 
Children’s Obesity Clinic, Holbaek Hospital, Denmark14. Our goal was 
to understand the role of lipid classes in pediatric obesity and to study 
single lipid associations of cardiometabolic risk profiles, including 
hepatic steatosis, dyslipidemia, insulin resistance, hyperglycemia 
and hypertension.

In our analysis, we identified plasma lipid signatures through 
227 annotated lipids. These, when tested against cardiometabolic 
risk features such as hepatic steatosis, dyslipidemia, insulin resist-
ance and cardiometabolic traits, related to liver function and glucose 
metabolism, indicating distinct class-wide lipid dynamics. Specifically, 
we observed that higher levels of ceramides (Cers), PE and phos-
phatidylinositols (PIs) were associated with worsened cardiometa-
bolic risk profiles, whereas sphingomyelins (SMs) were protective 
and associated with reduced cardiometabolic risks. The mechanism 
behind the Cer production in the body is highly dependent on SM 
and fatty acids (FA)16. Moreover, SM depletion has been found to 
correlate with inflammation12 and Cer in recent years has been linked 
with future development of cardiovascular disease (CVD)17. The rise in 
inflammatory cytokines and Cer in the circulation is proposed as a key 
mechanism in the development of atherosclerosis. Moreover, recent 
research has linked lipids from the PE and PI classes with conditions 
such as type 2 diabetes (T2D), CVD and steatotic liver disease, under-
scoring their significance in disease progression and potential treat-
ment monitoring18–22. Our observations of the associations between 
these lipid species and cardiometabolic risk profiles in children and 
adolescents suggests that the impact of these lipids on metabolic 
disturbances emerges early in life.

The analysis of individual species demonstrated that children 
decreasing their degree of obesity exhibited decreased levels of TG, 
Cer, PE and PI species. Our findings suggest that specific lipids partly 
mediated cardiometabolic complications from obesity. Understanding 
which lipid molecules to target is key for potential interventions and 
treatments, thereby preventing the progression of pediatric obesity 
into severe complications.

Results
Study design and participant characteristics
The study population consisted of children and adolescents from the 
HOLBAEK study, previously known as the Danish Childhood Obesity 
Biobank14,15, including an obesity clinic cohort, in which children 
and adolescents with a BMI ≥ 90th percentile (BMI standard devia-
tion score (SDS) ≥ 1.28) according to a Danish ref. 23 participated 
in a multidisciplinary nonpharmacological obesity management 
program at the Children’s Obesity Clinic, Holbæk Hospital; and a 
population-based cohort, recruited from schools across 11 munici-
palities in Zealand, Denmark.

Anthropometry, whole-body dual-energy X-ray absorptiometry 
(DXA) scan24, proton magnetic resonance spectroscopy (1H-MRS)25 and 
blood parameters26–32 were assessed as described previously. Untar-
geted lipidomic profiling was performed on 1,363 children and adoles-
cents who had baseline examinations, as well as 186 participants who 
received obesity management at baseline and had a median follow-up 
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((overweight/obesity versus normal weight) × age) for each lipid 
species, adjusting for sex. Significant interactions (P < 0.05) were 
detected in 26 lipid species, with lysophospholipids showing the most 
pronounced increase with age in the normal weight group compared 
to the overweight/obesity group, including lysodimethylphosphati-
dylethanolamine (LdMePE) (0:0 and 16:0) (β = 0.40 in normal weight 
versus β = 0.23 in overweight/obesity, P = 0.005), LdMePE (16:0 and 
0:0) (β = 0.33 versus β = 0.19, P = 0.016), LPC (0:0 and 16:0) (β = 0.39 
versus β = 0.24, P = 0.007), LPC (16:0 and 0:0) (β = 0.38 versus β = 0.20, 
P = 0.001) (Fig. 3c, Extended Data Fig. 2 and Supplementary Table 2). 
Two polyunsaturated FAs, FA(20:4) and FA(22:6), were decreased with 
age only in the overweight/obesity group. We detected statistically 
significant lower levels of these five lysophospholipids in age group 
3 when comparing participants with normal weight to participants 
with overweight or obesity (Fig. 3d).

Considering the age gap between the overweight/obesity and 
normal weight groups, we matched individuals in the obesity group 
to the normal weight group by age and sex. The subanalysis confirmed 

a significant obesity interaction on lysophospholipids (Supplemen-
tary Fig. 1).

Associations of lipid species with cardiometabolic risk
A total of 135 lipids had at least one significant association (P < 5% FDR) 
with cardiometabolic risk feature after adjusting for age, sex and BMI 
SDS (Extended Data Fig. 3a and Supplementary Table 3). Seventeen 
sphingolipids, including 9 Cers, were associated with higher prevalence 
of hepatic steatosis, dyslipidemia and insulin resistance, whereas 8 SMs 
were associated with lower prevalence. Nine PEs and eight PIs were 
shown to have positive associations with hepatic steatosis, dyslipidemia 
and insulin resistance (Fig. 4a).

In total, 207 lipids had at least one significant association  
(P < 5% FDR) with cardiometabolic trait after adjusting for age, sex 
and BMI SDS (Extended Data Fig. 3b and Supplementary Table 4). We 
explored potential sex differences in the associations between lipid 
species and cardiometabolic traits, identifying 13 lipid species that 
demonstrated significant sex interactions (P < 5% FDR) with eight 
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Associations of lipid species with overweight/obesity (Fig. 2)
• Di�erential abundance between weight status
• Logistic regression of overweight/obesity versus normal weight
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Obesity e�ect on age associated lipid dynamics (Fig. 3)
• PLS-DA between age groups
• Linear regression between age × obesity on lipid species
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• Prediction performance for hepatic steatosis (liver fat >5%)
• Correlation with cardiovascular disease and inflammation related protein biomarkers

• Associations between lipids and cardiometabolic risk profiles3

The e�ect of nonpharmacological obesity management (Fig. 5)
• Linear regression between BMI SDS reduction and changes in lipid species 
• Longitudinal associations between lipids and cardiometabolic traits
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Mediation analysis (Extended Data)
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Sensitivity analyses (Supplementary Fig.)6

Fig. 1 | Schematic study design. Lipidomic profiles were measured in  
373 children and adolescents with normal weight and 958 with overweight or 
obesity. We investigated lipid dysregulation in relation to overweight/obesity, 
cardiometabolic risk profiles, known CVD-related and inflammatory markers, 
and the predictive ability to detect hepatic steatosis. In addition, lipidomic 

profiles were measured in a subset of children and adolescents who received 
nonpharmacological obesity treatment. The lipidome response to BMI SDS 
reduction and longitudinal associations between lipids and cardiometabolic 
traits were examined. Mediation and sensitivity analyses were conducted. 
Created with BioRender.com.
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cardiometabolic traits (Supplementary Fig. 2). Sex-specific effect 
estimates are provided in Supplementary Table 5.

The associations between the 34 cardiometabolic risk feature- 
associated Cers, SMs, PEs and PIs with continuous cardiometabolic 
traits are shown (Fig. 4a). Specific Cers were positively associated with 
liver-related traits (liver fat %, ALT, AST and GGT), traditional lipids 

(LDL-C, TC and TG) and glycemic traits (C-peptide, HOMA-IR, insulin 
and glucose), glucagon and GLP-1, but not with hs-CRP or blood pres-
sure. SMs showed negative associations with TG, liver and glycemic 
traits, leptin:adiponectin ratio and GLP-1. Furthermore, PIs and PEs were 
positively associated with liver and glycemic traits, leptin:adiponectin 
ratio and GLP-1. PIs were also linked to higher levels of hs-CRP, 

Table 1 | Characteristics of children and adolescents in the cross-sectional study

Group n Normal weight n Overweight/obesity P

Sex, boys, n (%) 373 180 (48.3) 958 426 (44.5) 0.236

Age, years 373 8.35 (6.87–12.42) 958 11.90 (9.83–14.12) <0.001

Age group, n (%) 373 958 <0.001

Age group 1 207 (55.5) 212 (22.1)

Age group 2 126 (33.8) 612 (63.9)

Age group 3 40 (10.7) 134 (14.0)

BMI SDS 373 0.01 (−0.50–0.51) 958 2.87 (2.44–3.30) <0.001

Body fat, % 93 24.34 (21.00–28.81) 745 43.90 (40.36–46.96) <0.001

Waist, cm 263 62.90 (58.00–69.00) 884 91.50 (82.00–102.50) <0.001

WHR 263 0.84 (0.80–0.89) 882 0.94 (0.90–0.99) <0.001

Cardiometabolic traits

Liver fat, % 32 0.50 (0.50–0.50) 454 1.00 (0.50–2.00) <0.001

Plasma ALT, U l−1 373 20.00 (17.00–24.00) 957 25.00 (20.00–32.00) <0.001

Plasma AST, U l−1 331 30.00 (25.00–35.00) 932 24.00 (20.00–30.00) <0.001

Plasma GGT, U l−1 373 15.00 (12.00–17.00) 956 17.00 (15.00–21.00) <0.001

Plasma LDH, U l−1 342 225.00 (193.00–252.00) 939 224.00 (193.00–254.50) 0.51

Plasma bilirubin, μmol l−1 373 7.00 (5.00–9.00) 956 7.00 (6.00–10.00) <0.001

Plasma HDL-C, mmol l−1 372 1.50 (1.30–1.70) 957 1.20 (1.00–1.40) <0.001

Plasma LDL-C, mmol l−1 372 2.10 (1.80–2.50) 956 2.40 (2.00–2.80) <0.001

Plasma TG, mmol l−1 372 0.60 (0.40–0.70) 957 0.90 (0.70–1.30) <0.001

Plasma TC, mmol l−1 372 3.90 (3.50–4.40) 957 4.10 (3.60–4.60) <0.001

Serum C-peptide, nmol l−1 331 0.41 (0.31–0.54) 920 0.77 (0.57–1.01) <0.001

HOMA-IR, mIU l−1 212 1.06 (0.66–1.57) 934 3.13 (2.08–4.71) <0.001

Serum insulin, pmol l−1 366 39.15 (24.63–59.33) 946 83.72 (56.85–126.70) <0.001

Plasma glucose, mmol l−1 213 4.80 (4.50–5.00) 944 5.00 (4.80–5.30) <0.001

Whole blood HbA1c, mmol mol−1 372 34.00 (32.00–35.25) 953 34.00 (32.00–36.00) 0.35

Serum hs-CRP, mg l−1 335 0.17 (0.06–0.49) 801 1.46 (0.50–3.91) <0.001

Serum leptin, ng l−1 334 4.96 (2.27–11.03) 812 29.54 (17.18–49.96) <0.001

Serum adiponectin, μg l−1 351 5.74 (3.50–9.01) 843 3.49 (2.36–5.21) <0.001

Leptin:adiponectin ratio 334 0.90 (0.40, 2.50) 812 8.48 (4.37, 15.64) <0.001

Plasma glucagon, pmol l−1 366 5.98 (4.08–8.37) 939 8.47 (5.91–11.65) <0.001

Plasma total GLP-1, pmol l−1 367 2.81 (2.12–4.02) 946 3.07 (2.22–4.18) 0.028

SBP SDS 370 0.13 (−0.39–0.68) 891 0.73 (0.14–1.35) <0.001

DBP SDS 370 −0.16 (−0.51–0.27) 891 0.27 (−0.15–0.71) <0.001

Cardiometabolic risk features

Liver fat ≥ 1.5 %, n (%) 32 1 (3.1) 454 148 (32.6) 0.001

Liver fat ≥ 5.0 %, n (%) 32 0 (0.0) 454 71 (15.6) 0.031

High ALT, n (%) 373 47 (12.6) 957 370 (38.7) <0.001

Dyslipidemia, n (%) 372 40 (10.8) 957 364 (38.0) <0.001

Hyperglycemia, n (%) 221 19 (8.6) 942 132 (14.0) 0.041

Insulin resistance, n (%) 180 10 (5.6) 919 322 (35.0) <0.001

Hypertension, n (%) 370 11 (3.0) 891 142 (15.9) <0.001

Data are expressed as median (IQR) or frequencies, n (%). Differences between the two groups were tested with the two-sided Wilcoxon rank-sum test or chi-squared test.
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glucagon and DBP SDS. In a sensitivity analysis, further adjustment 
for TC and TG attenuated certain associations between lipids and  
liver and glycemic traits; however, the majority of distinct associations 
persisted (Supplementary Fig. 3)

We further tested the effect of weight status on the associations 
between the above-mentioned 34 Cers, SMs, PEs and PIs with cardio-
metabolic traits, adjusting for age and sex. Significant interactions 
were detected between 25 lipids with 14 traits (P < 5% FDR) (Extended 
Data Fig. 4 and Supplementary Table 6). In particular, significant asso-
ciations were observed between Cers, SMs, PEs and PIs with ALT and 
GGT, SMs with insulin and PIs with hs-CRP, leptin, glucagon, GLP-1 and  

DBP SDS; a larger effect size in children and adolescents with over-
weight or obesity compared to participants with normal weight.

Predictive performance of lipids to detect hepatic steatosis
Given their clinical relevance, we explored the predictive potential 
of cardiometabolic-associated lipids for detecting hepatic steatosis, 
defined as liver fat above 5%. Employing feature selection techniques, 
we identified a three-lipid panel comprising PI(32:1), PE(36:1) and 
Cer(d42:0). This panel demonstrated a mean cross-validated receiver 
operating characteristic (ROC) area under the curve (AUC) of 0.79  
(95% CI 0.77–0.81) through fivefold cross-validation repeated ten  
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times (Fig. 4b). Furthermore, integration of this lipid panel with three 
liver enzymes (ALT, AST and GGT) significantly increased the AUC from 
0.78 (95% CI 0.76–0.8) to 0.82 (95% CI 0.81–0.84) (as determined by 
DeLong’s test, P < 0.05).

Correlations of lipids with CVD and inflammatory markers
Correlation between the 34 cardiometabolic-associated Cers, SMs, 
PEs and PIs with markers from CVD and INF panels revealed significant 
correlations between nine sphingolipids and ten CVD markers and 
Cer(d42:0) with inflammatory marker CDCP1. Additionally, 10 PEs 
and PIs correlated with 15 CVD markers and 6 PEs and PIs correlated 

with 6 inflammatory markers (Spearman correlation r > 0.2 and P < 5% 
FDR) (Fig. 4c and Supplementary Table 7). Positive correlations were 
detected between Cers, PEs and PIs with CVD markers, including FGF21, 
PRSS8, SPON2, HAOX1, LEP and ADM, whereas SMs were negatively 
correlated. PEs and PIs also correlated with inflammatory markers, 
including VEGFA, IL-18R1 and HGF, among others (Fig. 4d).

Mediation effect of lipids on cardiometabolic traits
We conducted mediation analysis to explore the role of 87 obesity- 
associated lipids on cardiometabolic traits, adjusting for age and 
sex. Overall, 83 lipids significantly mediated the effect of obesity on  
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Fig. 3 | The interaction of obesity with age associated lipid species. a, PLS-DA 
score plot of lipid species in children with normal weight between three age 
groups. b, PLS-DA score plot of lipid species in children with overweight or 
obesity from three age groups. c, Associations between age and 26 lipid species 
that showed significant obesity (overweight/obesity versus normal weight) 
interaction (P < 0.05). Linear regression analysis was performed including an 
interaction term for obesity and adjusting for sex. The β-coefficients with error 
bars representing 95% CI were shown separately for the normal weight (green) 

and overweight/obesity group (red). n = 958 and 373 for overweight/obesity 
versus normal weight. d, Box plot showed the normalized intensities of five 
lysophospholipids that were most increased in normal weight children among 
three age groups. Data are presented as median values, box edges are IQR  
(25th to 75th percentiles) and whiskers represent 1.5 × IQR. An asterisk indicates a 
significant difference between two groups (P < 0.05). NS, not significant. n = 207, 
126 and 40 and 212, 612 and 134 for age group 1, 2 and 3 in the normal weight and 
overweight/obesity group, respectively.
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19 cardiometabolic traits, with a median mediation proportion of 5% 
(Extended Data Fig. 5 and Supplementary Table 8). Notably, certain 
PCs and TGs exhibited particularly substantial mediation proportions, 
surpassing 20% in traditional lipid profiles. Specifically, TG(52:1) dem-
onstrated partial mediation effects across cardiometabolic traits. Addi-
tionally, SMs, LPEs and LPCs were found to exert a negative mediation 
effect on the association between obesity and glycemic traits, with 
mediation proportions ranging from 5% to 23% for glucose.

The effect of personalized obesity management
A subset of 186 children and adolescents with overweight or obe-
sity, comprising 84 boys and with a median age of 11.6 years (inter-
quartile range (IQR) 9.9–13.7), underwent obesity management for 
a median duration of 1.1 years (IQR 1.0–1.2). Among them, 154 par-
ticipants experienced a decrease in BMI SDS, whereas 32 maintained 
or increased their BMI SDS. Across all participants, there was a median 
reduction in BMI SDS of −0.39 (IQR −0.76 to −0.07) from baseline to 
follow-up, accompanied by a median decrease in body fat content 
of −2.85 (IQR −6.53 to −0.38) (P < 0.001). Furthermore, significant 
improvements were observed in WHR, LDH, TC, HDL-C, LDL-C, HbA1c 
and DBP SDS (all P < 0.001) (Extended Data Table 1). Liver enzymes 
(ALT, AST, GGT and bilirubin) and glycemic traits (C-peptide, insulin 
and glucose) did not show significant improvements in all partici-
pants or the subgroup with decreased BMI SDS, but worsened in those 
who increased BMI SDS.

Before investigating the lipidome response to obesity manage-
ment, we examined the baseline associations of BMI SDS with lipids 
and how these associations evolved with BMI SDS reduction. Utilizing 
the baseline data from the intervention study as a replication set, we 
found that 25 of 58 lipids associated with BMI SDS in children with 
overweight/obesity from the cross-sectional study (P < 5% FDR, n = 958) 
also exhibited significant and consistent associations at baseline in the 
intervention study (P < 5% FDR, n = 186). Additionally, 24 lipids showed 
directionally consistent trends but did not reach statistical significance 
(Supplementary Fig. 4).

A comparison of lipid profiles before and after obesity manage-
ment revealed significant changes. Among the 145 lipids examined, 
significant increases were observed in 44 lipids, including PCs, LPCs 
and LPEs (P < 5% FDR). In contrast, 23 lipids, including Cers, SM and 
TGs were significantly decreased (Extended Data Fig. 6 and Supple-
mentary Table 9).

Furthermore, we investigated the lipidome changes in response to 
continuous BMI SDS reduction and their associations with cardiometa-
bolic traits. A total of 62 lipid species demonstrated significant associa-
tions with BMI SDS reduction, out of which 45 were also significantly 
associated with BMI SDS at baseline (P < 5% FDR). Of note, TGs exhibited 
the greatest reduction following BMI SDS reduction. Additionally, nine 
sphingolipids including Cers and SMs and four glycerophospholipids, 
including PEs and PIs were significantly decreased (Fig. 5a, Extended 
Data Fig. 7 and Supplementary Table 10).

Longitudinal analyses revealed associations between changes 
in Cers, SMs, PEs and PIs families with changes in cardiometabolic 
traits that were independent of age, sex, treatment duration, baseline 
BMI SDS and change in BMI SDS at nominal significance (P < 0.05) 

(Fig. 5b, Extended Data Fig. 8 and Supplementary Table 11). Changes 
in these cardiometabolic-associated lipid profiles were significantly 
associated with changes in traditional lipids. Changes in Cer(d42:0) 
and Cer(d42:1) were positively associated with changes in ALT at a 
nominal significance level. Changes in SM(d36:1) and SM(d36:2) 
were associated with changes in bilirubin and negatively associ-
ated with changes in HOMA-IR and glucose. Longitudinal positive 
associations were observed between certain PEs and PIs with ALT, 
HOMA-IR and glucose.

Mediation effect of lipid changes on cardiometabolic traits
We investigated whether changes in lipid species potentially mediate 
the relationship between reductions in BMI SDS and changes in cardio-
metabolic traits. A reduction in BMI SDS was associated with changes 
in 11 cardiometabolic traits and changes in 70 lipids. Out of 253 tested 
paths, 216 paths exhibited a significant indirect effect, with a median 
proportion of 23% (Extended Data Fig. 9 and Supplementary Table 12). 
Changes in 65 lipids significantly mediated the association of BMI SDS 
reduction and changes in traditional lipids, with mediation propor-
tions ranging from 7% to 60%. Furthermore, changes in Cer(d42:0) 
mediated an 18% reduction in ALT, while some PCs and TGs mediated 
improvements in HOMA-IR and insulin levels, with proportions rang-
ing from 9% to 26%.

To consolidate the intervention results a subset of lipids (n = 25) 
from seven lipid classes replicated with baseline BMI SDS using data 
from overweight/obesity group in the cross-sectional and base-
line data from children with obesity in the intervention study were 
selected. Twenty-two of these lipids in six lipid classes were signif-
icantly (P < 5% FDR) decreased with BMI SDS reduction. Of these,  
21 lipids mediated changes in cardiometabolic traits (Fig. 5c and  
Supplementary Table 13).

Discussion
Obesity impacts multiple organs34. In our study, children and adoles-
cents with overweight or obesity were heavily burdened by cardiometa-
bolic risk. Nearly 38% had dyslipidemia, over 30% displayed hepatic 
steatosis and over 15% exhibited hypertension.

We found elevated plasma concentrations of Cer and TG in chil-
dren and adolescents with overweight or obesity. Cer lipid molecules, 
emerging as early biomarkers for CVD35, play crucial roles in cellular 
stress, inflammation signaling and apoptosis36,37. Large TG, particularly 
those containing 54 and 56 carbons and little FA unsaturation, were 
elevated; however, more evidence is needed to understand specific 
TG biological function in obesity38.

Our investigation also explored lipidome variations across age 
in children and adolescents with obesity compared to normal-weight 
individuals. The main driver in age-stratification was phospholipid 
metabolism. We observed reductions in the levels of LdMePE(16:0), 
LPC(16:0) and LPC(14:0). While little is known about specific FA chains 
in lysophospholipids, these are active lipids involved in FA transport 
in the brain39. Furthermore, children with obesity had depleted lev-
els of omega-3 FAs, such as docosahexaenoic acid, indicating a diet 
poor in essential FAs40 and potentially impacting availability of doco-
sahexaenoic acid in the brain. The implications of these alterations for 

Fig. 4 | Associations of lipid species with cardiometabolic risk. a, The 34 lipids 
including Cer, SM, PE and PI species having at least one significant association 
with one cardiometabolic risk feature (P < 5% FDR). Logistic regression analysis 
was performed adjusting for age, sex and BMI SDS. Their associations with 
cardiometabolic traits tested by linear regression are shown in parallel.  
b, The discriminant accuracy of three lipids and liver enzymes for diagnosing 
hepatic steatosis, defined as liver fat ≥5.0%. The analysis includes data from  
479 participants, among whom 71 cases of hepatic steatosis were identified.  
Each curve is accompanied by its corresponding 95% CI, depicted as a shaded 
area. The mean AUC values with their respective 95% CI are also provided for each 

ROC curve. c, Correlations of these cardiometabolic-associated lipid species with 
CVD and inflammation (INF)-related protein biomarkers were calculated using 
two-sided Spearman correlation. The size of the link represents the number of 
significant correlations (Spearman r > 0.2 and P < 5% FDR). Nine sphingolipids 
correlated with ten CVD markers, one sphingolipid correlated with one INF 
marker. Ten PEs and PIs correlated with 15 CVD markers and six PEs and PIs 
correlated with six INF markers. d, Two-sided Spearman correlations are shown. 
*P < 5% FDR; #P < 2.2 × 10−4. The sample size (n) for each feature/trait is listed in 
Table 1; the maximum observed is 1,330.
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developmental outcomes like puberty onset and cognitive develop-
ment warrant further dedicated research41,42.

Integration of lipidomics with cardiometabolic risk profiles 
revealed that increased Cer and decreased SM were associated with 
dyslipidemia and insulin resistance. C-peptide, HOMA-IR, insulin and 

glucose levels, correlated with Cer level and negatively with SM. SM and 
Cer are closely linked metabolically and elevated Cer in blood is linked 
to a risk of developing T2D43, hepatic steatosis44 and CVD45. Although 
the mechanisms are still elusive, general inflammatory signals such as 
cytokines are thought to upregulate Cer synthesis46. Cer also correlated 
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Fig. 5 | The effect of nonpharmacological obesity management. a, BMI SDS 
reduction was associated with changes in 62 lipids tested by linear regression, 
adjusting for age, sex and treatment duration (n = 186, P < 5% FDR). The  
β-coefficients with error bars representing 95% CI are shown. b, Changes in Cers, 
SMs, PEs and PIs were associated with changes in cardiometabolic traits tested 
by linear regression, adjusting for age, sex, treatment duration, baseline BMI 
SDS and change in BMI SDS (P < 5% FDR). BMI SDS reduction was calculated as 
the difference between BMI SDS at baseline and BMI SDS at follow-up. Changes 
in lipid profiles and cardiometabolic traits were calculated as the difference 
between the values at follow-up and those at baseline. +P < 0.05; *P < 5% FDR.  
c, Alluvial plot to illustrate the overall lipid class inter cohort validation, response 
to weight loss and proportion of mediation links: 25 validated lipids in seven 

lipid classes associated with baseline BMI SDS using data from overweight/
obesity group in the cross-sectional (n = 958) and baseline data from children 
with obesity (n = 186) in the intervention study (left). Twenty-two of these 
lipids in six classes were significantly (P < 5% FDR) decreased with BMI SDS 
reduction (middle). The significant mediator role of changes in these lipids in 
the association between changes in BMI SDS and changes in cardiometabolic 
traits (right, n = 21). The colors of curved lines represent different lipid classes. 
NA indicates that three lipids, which did not significantly change with BMI SDS 
reduction, were not applicable for mediation effect. NS, nonsignificant indirect 
effect from mediation analysis. The sample size (n) for each trait is listed in 
Supplementary Table 9; the maximum observed is 185.
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with FGF21, a reported CVD biomarker47 and the inflammatory cytokine 
CDCP1, which has been linked with myocardial infarction and nonal-
coholic steatohepatitis48,49.

Increased levels of specific PIs and PEs were associated with 
hepatic steatosis in children and adolescents. Notably, PI(32:1) showed 
a strong association with liver traits and inflammatory cytokines. 
A previous study involving 42 children with obesity reported links 
between hepatic steatosis and elevated levels of PEs50, as have adult 
MASLD studies21,22. We therefore compared the diagnostic accuracy 
of a three-lipid panel with that of liver enzymes (ALT, AST and GGT) in 
assessing hepatic steatosis in children. The lipid panel performance was 
in line with liver enzymes, and integrating enzymes and lipids yielded 
82% overall diagnostic accuracy, highlighting the potential for routine 
clinical evaluations.

We examined the mediating effects of lipids on the association 
between obesity and cardiometabolic outcomes and found that 
most lipids demonstrated partial effects on cardiometabolic traits. 
Notably, certain TGs mediated effects across glycemic and liver traits, 
whereas SMs exhibited a negative mediation effect on glycemic traits, 
by lowering glucose levels. These findings suggest that SMs, LPEs and 
LPCs may play a protective role in regulating glucose homeostasis 
in children.

Our intervention study aimed to reduce the degree of obesity 
and cardiometabolic risk, with 83% of participants reducing their BMI 
SDS. The clinical profile improved, including decreases in total body 
and liver fat, circulating lipoproteins and blood pressure; however, 
circulating total TG did not change, though specific TGs investigated 
with lipidomics did. Approximately 17% participants did not reduce 
their BMI SDS and this group exhibited increased circulating C-peptide 
levels and potential prediabetes risk51.

Dietary and exercise interventions have long been recognized 
as tools to improve dyslipidemia in obesity52. In our study, the overall 
lipidome changes were clear: BMI SDS reduction was associated with 
reductions in all lipid classes. TGs were drastically reduced, while 
cardiometabolic-associated Cer, PE and PI also decreased with BMI 
SDS reduction. Particularly Cer(42:0) and Cer(40:1), linked to all-cause 
mortality in adults with diabetes45, decreased in response to BMI SDS 
reduction. Changes in Cer were associated with changes in ALT levels 
after adjusting for baseline BMI SDS and change in BMI SDS, indicating 
improved liver function. Changes in PE(40:1) and PI(36:1) were associ-
ated with changes in HOMA-IR and insulin levels, suggesting a potential 
role in modulating insulin resistance.

Mediation analysis revealed that changes in 66 lipids partially 
affected cardiometabolic traits, with an average mediation propor-
tion of 23%. Changes in Cer(d42:0) partially mediated reduced ALT 
levels, whereas changes in phosphatidylcholine (PC) and TG medi-
ated improvements in HOMA-IR and insulin levels; however, given the 
smaller cohort size of the intervention group, we acknowledge the 
limitations of relying on nominal significance.

Overall, our findings emphasize that lipid dysregulation and 
potential lipid-mediated damage can be reversed through personal-
ized, clinically based obesity management in children and adolescents. 
However, given the heterogeneous nature of obesity, pharmacological 
interventions might be necessary for specific lipids if lifestyle manage-
ment is ineffective, as seen with liraglutide lowering Cer(42:1) indepen-
dently of weight loss in adults53.

Limitations of this study include the lack of ethnic diversity, as it 
was conducted in a majority white pediatric population. Genetic fac-
tors, diet and exercise likely impacted the baseline lipidome. The stea-
tosis liver predictor was calculated in 71 cases and a larger diagnostic 
group is needed for validation. Notably, without a control group it was 
not possible to definitively attribute changes in lipid species solely to 
obesity management. A strength of this study was the inclusion of two 
large cohorts of deeply phenotyped children and adolescents from a 
population-based study.

In conclusion, lipidomics profiling has highlighted lipids poten-
tially involved in the disease pathology of childhood obesity and asso-
ciated with cardiometabolic complications. Personalized obesity 
management can beneficially modify the overall lipidome in children 
and adolescents.
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Methods
Ethics
According to the Declaration of Helsinki, written informed consent 
was obtained from all participants. An informed oral assent was given 
by the participant if the participant was younger than 18 and then the 
parents gave informed written consent. The study was approved by 
the Ethics Committee of Region Zealand, Denmark (SJ-104) and by the 
Danish Data Protection Agency (REG-043-2013). The HOLBAEK study 
is registered at ClinicalTrials.gov (NCT00928473).

Study population
Both cohorts from the HOLBAEK study were enrolled between Janu-
ary 2009 and April 2019. Among 1,363 children and adolescents with 
available lipidome profiles in the cross-sectional study, participants 
were excluded based on diagnosed type 1 diabetes mellitus or T2D 
(n = 3); intake of medications including statins, insulin, metformin 
and liraglutide (n = 3); meeting T2D criteria based on blood sample 
(fasting plasma glucose ≥ 7.0 mmol l−1 and/or HbA1c ≥ 48 mmol mol−1) 
(n = 2); the interval between visit and blood sample collection >90 days 
(n = 12); underweight (BMI < 5th percentile (BMI SDS < −1.64)) (n = 12). 
As a result, 1,331 participants were included in the cross-sectional 
analysis and divided into normal weight (BMI ≥ 5th and BMI < 90th 
percentile (BMI SDS ≥ −1.64 and <1.28), n = 373) and overweight/obesity 
(BMI ≥ 90th percentile (BMI SDS ≥ 1.28), n = 958) groups. Participants 
with obesity (BMI ≥ 99th percentile (BMI SDS ≥ 2.33), n = 766) were 
further stratified as indicated.

Children and adolescents with overweight or obesity (BMI 
SDS ≥ 1.28) enrolled in the multidisciplinary, family-based and 
individual-centered obesity clinic cohort received comprehensive man-
agement using an evidence-based treatment protocol which comprises 
a range of recommendations on nutrition, including meal exercises, 
picky eating, exercise, inactivity, border setting promoting growth, 
development and improved physical, mental and social thriving, as 
previously described14. The intervention study included 186 children 
and adolescents with overweight or obesity, who were followed for a 
median of 1.1 years (IQR 1.0–1.2). Their lipidomic profiles were available 
at both baseline and follow-up.

Anthropometric measurements
In the obesity clinic cohort, anthropometrics were obtained at clinical 
examinations, whereas the population-based group was assessed in a 
mobile laboratory by medical professionals31. Weight, height, waist and 
WHR were measured. BMI SDS was calculated based on a Danish ref. 23. 
For SBP and DBP, mean values for the last two measurements of blood 
pressure were calculated and converted to blood pressure SDS based 
on age-, sex- and height-specific reference values from the American 
Academy of Pediatrics54.

Lipidomics
EDTA plasma or serum sample preparation for lipidomic analysis has 
been described previously55. In brief, 10 μl plasma was mixed with 
10 μl 0.9% w/v NaCl(aq) and internal standards containing 120 μl 
chloroform:methanol (2:1) mixture. The lipid containing chloroform 
was analyzed using ultra-high-performance liquid chromatography 
coupled with quadrupole time-of-flight MS (Agilent LC-Q-TOF 6200 
with MassHunter Data Acquisition v.B.09.00). Samples were analyzed 
in a randomized order with quality control pooled plasma samples 
at regular intervals throughout the run. The lipidomics data were 
pre-processed with MZmine2 (ref. 56) and lipid features were normal-
ized to internal standards and log transformed. The data were cross 
matched with an in-house library where 227 lipid features from 16 dif-
ferent lipid classes were identified at level 1 and 2 (ref. 57). We excluded 
lipids with >20% missing data across all samples and relative standard 
deviation (RSD) values > 20% across quality control samples. Serum lipi-
domics raw files from the intervention study were pre-processed with 

Skyline v.22.2.0.351 (ref. 58), where a list of targets were generated from 
the in-house library applied to the first study. Lipids were normalized 
to internal standards and log transformed. Features with RSD > 20% 
were excluded and only 145 lipids found in the cross-sectional study 
were considered in the intervention analysis.

The identified lipids from both studies were standardized to have 
a mean of 0 and s.d. of 1. Lipids were classified into classes: cholesteryl 
ester (CE), Cer, DG, dMePE, FA, hexosylceramides (HexCer), LdMePE, 
LPC, LPE, PC, PE, alkyl or alkenyl ether PEs (PE-O/P), phosphatidylg-
lycerol (PG), PI, SM and TG. In particular, lipid species were classified 
into three major classes: sphingolipids (Cer, HexCer and SM), glycer-
ophospholipids (dMePE, LdMePE, LPC, LPE, PC, PE, PE-O/P, PG and PI) 
and other lipids (CE, DG, TG and FA).

DXA examination
Whole-body DXA scans were performed and total body fat percentage 
was quantified in the overweight/obesity (n = 745), normal weight 
(n = 93) groups and 125 children and adolescents with overweight 
or obesity who received the obesity management, using a GE Lunar 
Prodigy (DF+10031, GE Healthcare) until October 2009 and thereafter 
using a GE Lunar iDXA (ME+200179, GE Healthcare)24.

1H-MRS examination
Liver fat content was quantified in the overweight/obesity (n = 454) 
and normal weight (n = 32) groups and 100 children and adolescents 
with overweight or obesity received obesity management, using a 3T 
Achieva MR imaging system (Philips Medical Systems), as previously 
described25. Data postprocessing was performed by an experienced 
senior magnetic resonance physicist.

Biochemical analyses
Venous blood samples were collected after overnight fasting. Fasting 
biochemical measurements including in plasma: ALT, AST, GGT, LDH 
and bilirubin26, HDL-C, LDL-C, TC, TG29, glucose27, glucagon28 and GLP-1 
(ref. 31), in serum: insulin, C-peptide27, hs-CRP32, leptin, adiponectin, 
leptin:adiponectin ratio30 and in whole blood HbA1c27, as previously 
described.

Defining cardiometabolic risk features
Hepatic steatosis was defined using two cutoffs of liver fat: ≥5.0%, cutoff 
used in adults histological59; and ≥1.5%, a cutoff used by our group that 
has shown to represent more accurately the upper normal limit of liver 
fat content in children and adolescents25. We also defined high ALT 
(above 24.5 U l−1 in girls and above 31.5 U l−1 in boys), which was found to 
be the optimal cutoff for diagnosing hepatic steatosis (liver fat > 1.5%) 
by our group26. Hyperglycemia was defined as fasting plasma glucose 
≥5.6–6.9 mmol l−1 and/or HbA1c ≥ 39–47 mmol mol−1, according to the 
American Diabetes Association guidelines for prediabetes60. Insulin 
resistance was defined based on HOMA-IR value above the 90th per-
centile of previously published age- and sex-specific population-based 
reference values from our group27. HOMA-IR was calculated as (insu-
lin mU l−1 × glucose mM)/22.5. Dyslipidemia was defined as values 
above the 95th percentile according to pediatric guidelines, corre-
sponding to TC ≥ 200 mg dl−1 (5.2 mM), LDL-C ≥ 130 mg dl−1 (3.4 mM), 
TG ≥ 100 mg dl−1 (1.1 mM) for 0–9 years or ≥130 mg dl−1 (1.5 mM) for 
10–19 years or HDL-C < 40 mg dl−1 (1.0 mM)61. Hypertension was defined 
as a SBP and/or DBP above the 95th percentile for age, height and sex62.

CVD-related and inflammatory markers
A proximity extension assay was performed using the Target 96 Car-
diovascular II (CVDII) and Target 96 Inflammation (INF) panels from 
Olink Proteomics on EDTA plasma, as previously described63. Proximity 
extension assay technology uses nucleic acid labeling of antibodies in 
combination with qPCR, producing normalized protein expression 
values as an arbitrary unit on a log2 scale. Overall, 85 markers from 
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CVDII and 64 markers from INF were included as >80% of individuals 
were above the detection limit.

Statistical analyses
Statistical analyses were performed using R software v.4.2.2 (ref. 64). 
Data are expressed as median (IQR) for continuous variables or fre-
quencies and percentages for categorical variables. The Wilcoxon 
rank-sum test (for continuous variables) and the chi-squared test  
(for categorical variables) were used to test differences in character-
istics between two groups.

Differential expression analysis was applied to weight status (nor-
mal weight, overweight and obesity) using ANOVA adjusting for age and 
sex, followed by a Tukey’s honestly significant difference (Tukey’s HSD) 
post hoc test for pairwise comparisons. Logistic regression was used 
to examine the association of each lipid individually with overweight/
obesity versus normal weight adjusted for age and sex. PLS-DA was 
performed to examine the lipidomes differences between the three 
age groups, separately for obesity/overweight and normal weight 
groups using ropls v.1.30.0 package65. Tenfold cross-validation and 300 
permutations were used. The first two component scores were plotted 
in a score plot, where each point represents an individual.

The effect of obesity on the association between continuous age 
and individual lipid species was tested by a corresponding interaction 
model including an interaction term (age × overweight/obesity versus 
normal weight) adjusting for sex. Cardiometabolic traits were log 
transformed except for BMI SDS, SBP SDS and DBP SDS. The associa-
tions of lipids with cardiometabolic risk features and cardiometabolic 
traits were examined using multiple logistic and linear regressions 
adjusted for age, sex and BMI SDS when pooling the normal weight 
and overweight/obesity groups. The interaction between sex and 
lipid species (lipid × sex) was examined in linear regression models 
for cardiometabolic traits, adjusted for age and BMI SDS. The obesity 
interaction (lipid × overweight/obesity versus normal weight) was 
also tested in the linear regression models for cardiometabolic traits. 
The reported estimates (β or OR) are based on a 1-s.d. unit increase in 
independent variables. Spearman correlations between lipids with CVD 
and inflammatory markers were tested and the correlation coefficients 
and the P values were obtained using the rcorr function in the Hmisc 
v.4.7.2 package66. Multiple testing correction was performed based on 
FDR at 5% and a stringent Bonferroni adjusted P < 2.2 × 10−4 (0.05 of 227 
lipids tested), separately for each outcome. P < 5% FDR was considered 
statistically significant. In all figures, only those lipids with at least 
one outcome association reaching FDR significance were included. 
Changes in lipid profiles before and after obesity management were 
assessed while adjusting for age and sex. Linear mixed models were 
employed using the gls function from the nlme package v.3.1.160 in 
R67. The effects of BMI SDS reduction on lipid profiles were analyzed 
using linear regressions controlling for age, sex and treatment dura-
tion. The associations between changes in lipid profiles and changes in 
continuous cardiometabolic traits were examined using linear regres-
sions controlling for age, sex, treatment duration, baseline BMI SDS and 
change in BMI SDS. BMI SDS reduction was calculated as the difference 
between BMI SDS at baseline and BMI SDS at follow-up. Changes in 
lipid profiles and cardiometabolic traits were calculated as the differ-
ence between the values at follow-up and those at baseline. The chord 
diagram and heatmaps were created using the circlize v.0.4.15 (ref. 68) 
and ComplexHeatmap v.2.14.0 (ref. 69) R packages.

Prediction model. We performed feature selection for hepatic stea-
tosis, defined as liver fat above 5%, using the maximum relevance and 
minimum redundancy method70, implemented in the njab Python 
package (https://njab.readthedocs.io/en/stable/). Through fivefold 
cross-validation repeated ten times, this analysis identified a three-lipid 
panel that achieved the highest mean ROC AUC. Furthermore, we 
evaluated the discriminative performance of three clinical used liver 

enzymes (ALT, AST and GGT), both individually and in combination 
with the lipid panel using the same cross-validation method. To miti-
gate imbalanced class distribution, a downsampling approach was 
applied to the majority class within each cross-validation fold. The 
statistical comparison of AUCs was conducted using DeLong’s test. 
These analyses were performed using the caret v.6.0.94 (ref. 71) and 
pROC v.1.18.0 R package72.

Mediation analysis. In the cross-sectional study, mediation analysis 
was performed to explore the mediating role of obesity-associated 
lipids on cardiometabolic traits. Bootstrapping with 1,000 iterations 
was employed to estimate direct, indirect and total effects across 
obesity–lipid–trait triangles adjusted for age and sex. We examined 518 
potential paths identifying significant associations between obesity 
→ lipid → traits at a significance level of P < 5% FDR. The proportion of 
the effect mediated from obesity through the lipid was determined 
by dividing its indirect effect by the total effect. In the intervention 
study, mediation analysis was performed to examine the mediation 
effect of lipid changes on the association between BMI SDS reduction 
and changes in cardiometabolic traits adjusting for age, sex and treat-
ment duration. We tested 253 possible paths (BMI SDS reduction → lipid 
change → trait change associations at nominal significance P < 0.05). 
Bootstrap confidence intervals were used to assess the statistical sig-
nificance of the mediation effects. Mediation analyses were performed 
using the mediation v.4.5.0 R package73.

Sensitivity analyses. We matched individuals in the obesity group to 
those in the normal weight group by age and sex using the MatchIt R 
package. The matched obesity group has a median age of 9.10 (IQR 7.53–
10.18) (n = 373, 175 boys), while the normal weight group has a median 
age of 8.35 (6.87–12.42) (n = 373, 180 boys). We performed a subanalysis 
to investigate the interaction between obesity and the association of 
age with 26 previously identified lipids using age- and sex-matched 
overweight/obesity and normal weight groups (n = 373 versus n = 373). 
To explore the impact of TC and TG on lipid–trait association, we tested 
the association between 34 cardiometabolic-associated lipids and 
traits adjusted for age, sex, BMI SDS, TC and TG. To identify common 
lipids associated with BMI SDS in both the cross-sectional and interven-
tion studies, we performed linear regression analyses between BMI 
SDS and lipid species adjusting for age and sex. These analyses utilized 
data from the overweight/obesity group in the cross-sectional study 
and baseline data from the intervention study.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All results from statistical and bioinformatics analysis are provided in 
Supplementary Tables 1–13. Mean levels of lipids have been deposited 
in the GitHub repository at https://github.com/yunhuanghy/Lipid-
omic/tree/main/average_data. In line with the current regulation of 
General Data Protection Regulation (https://gdpr-info.eu/) to maintain 
patient confidentiality, individual-level clinical and lipidomics data 
generated in this study cannot be made publicly available. Lipidomics 
datasets are available from the authors upon request by contacting T.H. 
at torben.hansen@sund.ku.dk. The obesity management protocol is 
available upon request to J.-C.H. at jhom@regionsjaelland.dk. Access to 
the data can be granted through the Danish Data Protection Agency and 
the ethics committee for the Region Zealand of Denmark by obtaining 
proper approvals and in accordance with patient information and pro-
cessing agreements. The time frame for response to requests from the 
authors is within 1 month. When applying and processing data, restric-
tions apply: (1) a data-processing agreement must be signed between 
the data controller and processor; (2) data must not be processed for 
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purposes other than statistical and scientific studies; (3) personal data 
must be deleted, anonymized and destroyed at the end of investigation; 
and (4) data must not be passed on to a third party or individuals who 
are not authorized to access the data.

Code availability
The code used for data analysis is available on GitHub: https://github.
com/yunhuanghy/Lipidomic.
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Extended Data Fig. 1 | Associations between 227 lipid species and overweight/
obesity. Logistic regression was performed adjusting for age and sex. The odds 
ratio (OR) with error bars representing 95% CI of each lipid species are shown. 
Circles: Gray denotes no significant associations; orange and blue denote 

positive and negative significant associations adjusted for multiple testing 
(P < 5% FDR), respectively. n = 958/373 for overweight/obesity and normal  
weight groups.
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Extended Data Fig. 2 | Obesity interaction on the association between age and lipid species. Linear regression analysis was performed including an interaction 
term for obesity and adjusting for sex. The top 10 lipid species within each directionality of association (10 positive and 10 negative) in normal weight (n = 373) and 
overweight/obesity (n = 958) groups are labeled.
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Extended Data Fig. 3 | Associations between lipid species and cardio
metabolic risk. a, 135 lipids have at least one significant association (P < 5% FDR) 
with one risk feature tested by logistic regression, adjusting for age, sex and BMI 
SDS. b, 207 lipids have at least one significant association (P < 5% FDR) with one 

trait tested by linear regression, adjusting for age, sex and BMI SDS. An asterisk 
indicates P < 5% FDR; a hash indicates P < 2.2 × 10−4. The sample size (n) for each 
feature is listed in Table 1, the maximum observed is 1,330.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-024-03279-x

Extended Data Fig. 4 | Associations between 25 cardiometabolicassociated 
lipids with 14 traits that showed significant obesity interaction (P < 5% FDR). 
Linear regression analysis was performed including an interaction term  
for obesity (overweight/obesity vs. normal weight) and adjusting for sex.  

The β-coefficients with error bars representing 95% CI are shown separately for 
the normal weight (green) and overweight/obesity group (red). The sample size 
(n) for each trait is listed in Table 1.
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Extended Data Fig. 5 | The mediation proportion of 83 lipid profiles on 
the association between obesity and 19 cardiometabolic traits. Mediation 
analysis was performed adjusting for age and sex. Each dot represents a 
significant indirect effect (P < 5% FDR), with dot size indicating the mediation 

proportion categorized into <5%, 5–10%, 10–20%, and ≥ 20%. Colors denote  
the direction of effects, with orange indicating positive and blue negative.  
The sample size (n) for each trait is listed in Table 1.
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Extended Data Fig. 6 | Lipid changes associated with obesity management. Sixty-seven lipids showed significant changes (n = 186, P < 5% FDR), 23 decreased  
(blue) and 44 increased (orange). These changes were tested by a linear mixed model, adjusting for age and sex. The β-coefficients with error bars representing  
95% CI were shown.
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Extended Data Fig. 7 | Associations between BMI SDS reduction and changes 
in 145 lipid species. Linear regression analysis was performed adjusting for age, 
sex, and treatment duration year (n = 186, P < 5% FDR). The β-coefficients with 

error bars representing 95% CI are shown. BMI SDS loss was calculated by BMI SDS 
at baseline - BMI SDS at follow-up. Changes in lipid profiles were calculated by 
value at follow-up - value at baseline.
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Extended Data Fig. 8 | Associations between changes in 145 lipid species and 
changes in cardiometabolic traits. Linear regression analysis was performed 
adjusting for age, sex, treatment duration, baseline BMI SDS, and change in BMI 

SDS. A plus sign indicates P < 0.05; an asterisk indicates P < 5% FDR. The sample 
size (n) for each trait is listed in Extended Data Table 1, the maximum observed  
is 185.
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Extended Data Fig. 9 | The proportion mediated by changes of 66 lipid 
profiles on the association between BMI SDS reduction and changes in eight 
cardiometabolic traits. Mediation analysis was performed adjusting for age, 
sex, and treatment duration. Each dot represents a significant indirect effect, 
with dot size indicating the mediation proportion categorized into 5–10%, 
10–20%, and ≥ 20%. Colors denote the direction of effects, with orange indicating 

positive and blue negative. BMI SDS reduction was calculated as the difference 
between BMI SDS at baseline and BMI SDS at follow-up. Changes in lipid profiles 
and cardiometabolic traits were calculated as the difference between the values 
at follow-up and those at baseline. The sample size (n) for each trait is listed in 
Extended Data Table 1.
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Extended Data Table 1 | Changes in participants characteristics after nonpharmacological obesity management

Changes from baseline to follow-up are expressed as median (interquartile range), with significance determined using the two-sided Wilcoxon signed rank test. Abbreviations: BMI, body mass 
index; SDS, standard deviation score; WHR, waist-to-hip ratio; ALT, alanine aminotransferase; AST, aspartate transaminase; GGT, gamma-glutamyl transferase; LDH, lactate dehydrogenase; 
HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; TG, triglycerides; HOMA-IR, homeostasis model assessment of insulin resistance; 
HbA1c, hemoglobin A1c; DBP, diastolic blood pressure; SBP, systolic blood pressure.
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